Enhancing ORR Catalytic Activity and Electrochemical Investigation of La1−2xBaxBixFeO3 Cathode for Low-Temperature Solid Oxide Fuel Cell

Author:

Shaheen Nusrat12,Chen Zheng12,Nong Yumei12,Su Tao12ORCID,Yousaf Muhammad3ORCID,Lu Yuzheng4ORCID,Li Ling4

Affiliation:

1. School of Civil Engineering and Architecture, State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, Guangxi University, Nanning 530004, China

2. Key Laboratory of Disaster Prevention and Structural Safety of China Ministry of Education, School of Civil Engineering and Architecture, Guangxi University, Nanning 530004, China

3. Energy Storage Joint Research Center, School of Energy and Environment, Southeast University, No. 2 Si Pai Lou, Nanjing 210096, China

4. College of Electronic and Engineering, Nanjing Xiaozhuang University, Nanjing 211171, China

Abstract

Perovskite cathodes have emerged as a promising alternative to traditional cathode materials in low-temperature solid oxide fuel cells (LT-SOFCs) due to their exceptional catalytic properties and high oxygen reduction reaction (ORR) activity. Their fast catalytic activity and chemical stability have drawn significant attention to lowering the operating temperature of SOFCs. In this study, Ba2+ and Bi3+ are doped into LaFeO3. The aim is to investigate the catalytic activity and electrochemical performance of LT-SOFCs. The presented cathode material is characterized in terms of phase structure, surface morphology, and interface studies before being applied as a cathode in SOFCs to measure electrochemical performance. The XPS study revealed that La1−2xBaxBixFeO3 (x = 0.1) exhibits enriched surface oxygen vacancies compared to La1−2xBaxBixFeO3 (x = 0.2). La1−2xBaxBixFeO3 with (x = 0.1 and 0.2) delivers a peak power density of 665 and 545 mW cm−2 at 550 °C, respectively. Moreover, impedance spectra confirmed that La1−2xBaxBixFeO3 with x = 0.1 exhibits lower electrode polarization resistance (0.33 Ω cm2) compared to La1−2xBaxBixFeO3 with x = 0.2 (0.57 Ω cm2) at 550 °C. Our findings thus confirm that LBBF cathode-based SOFCs can be considered a potential cathode to operate fuel cells at low temperatures, and it will open up another horizon in the subject of research.

Funder

National Natural Science Foundation of the People’s Republic of China

Guagxi Natural Science Foundation, China

Natural Science Foundation of Jiangsu Higher Education Institutions of China

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3