Mechanochemically Synthesized Chalcogenide Cu3BiS3 Nanocrystals in an Environmentally Friendly Manner for Solar Cell Applications

Author:

Dutková Erika1ORCID,Baláž Matej1ORCID,Sayagués María Jesús2,Kováč Jaroslav3,Kováč Jaroslav3ORCID

Affiliation:

1. Department of Mechanochemistry, Institute of Geotechnics Slovak Academy of Sciences, Watsonova 45, 04001 Košice, Slovakia

2. Institute of Material Science of Seville, Consejo Superior de Investigaciones Científicas, Seville University, Avenida Américo Vespucio 49, 41092 Seville, Spain

3. Institute of Electronics and Photonics, Slovak University of Technology, Ilkovičova 3, 81219 Bratislava, Slovakia

Abstract

Ternary wittichenite Cu3BiS3 nanocrystals were prepared mechanochemically using a planetary ball mill from elemental copper, bismuth and sulfur in a stoichiometric ratio in only 5 min. The orthorhombic wittichenite Cu3BiS3 was nanocrystalline with an approximate crystallite size of 38 nm ± 9 nm, as confirmed by Rietveld refinement. The nanocrystalline character of orthorhombic Cu3BiS3 was also proven by transmission electron microscopy. The measured Raman spectrum confirmed the formation of pure wittichenite Cu3BiS3. The morphology characterization demonstrated the homogeneity of the sample. The value of the specific surface area for pure mechanochemically prepared Cu3BiS3 after 5 min was 2.7 m2g−1. The optical properties were investigated using UV–Vis absorption and micro-photoluminescence spectroscopy. From the absorption UV–Vis spectrum, the value of the bandgap energy was determined to be 1.52 eV, which creates an assumption for the use of wittichenite Cu3BiS3 in photovoltaic applications. The optoelectrical properties of the prepared Cu3BiS3 nanocrystals were verified by current–voltage measurements in the dark and under white light illumination. The photocurrent increased by 26% compared to the current in the dark at a voltage of 1 V. The achieved results confirmed a very fast and efficient way of synthesizing a ternary wittichenite Cu3BiS3, which can be used for applications in solar cells.

Funder

Slovak Research and Development Agency

Slovak Grant Agency VEGA

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Composite and Pristine Silver Bismuth Sulphide: Synthesis and Up-to-Date Applications;Journal of Inorganic and Organometallic Polymers and Materials;2023-09-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3