Effect of Hot-Rolling on the Microstructure and Impact Toughness of an Advanced 9%Cr Steel

Author:

Tkachev Evgeniy12ORCID,Belyakov Andrey1ORCID,Kaibyshev Rustam2

Affiliation:

1. Laboratory of Mechanical Properties of Nanostructured Materials and Superalloys, Belgorod State University, 308015 Belgorod, Russia

2. Laboratory of Advanced Steels for Agricultural Machinery, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, 127550 Moscow, Russia

Abstract

A 9%Cr martensitic steel with Ta and B additions was subjected to thermo-mechanical treatment (TMT) including rolling in the range of metastable austenite at 900–700 °C followed by water quenching and tempering at different temperatures. Applied TMT with tempering at T ≥ 700 °C substantially improved the impact toughness. The application of the TMT with subsequent tempering at 780 °C decreased the ductile–brittle transition temperature from 40 to 15 °C and increased the upper shelf energy from 300 to 380 J/cm2 as compared to the normalized and tempered (NT) condition. The microstructural observations with scanning and transmission electron microscopes showed the precipitation of fine Ta-rich MX carbonitride and M23C6 carbide during TMT and subsequent tempering. The analysis of the cleavage facets and the secondary cracks with electron back-scattered diffraction (EBSD) revealed that the brittle fracture occurred via cleavage cracking along {100} planes across the laths, while the high-angle boundaries of martensite blocks and packets were effective barriers to the crack propagation. The increased impact toughness of the tempered TMT steel sample was attributed to enhanced ductile fracture owing to the uniform dispersion of the precipitates and favorable {332}⟨113⟩ crystallographic texture.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3