Systematic Assessment of Phonon and Optical Characteristics for Gas-Source Molecular Beam Epitaxy-Grown InP1−xSbx/n-InAs Epifilms

Author:

Talwar Devki N.12ORCID,Lin Hao-Hsiung3

Affiliation:

1. Department of Physics, University of North Florida, 1 UNF Drive, Jacksonville, FL 32224, USA

2. Department of Physics, Indiana University of Pennsylvania, 975 Oakland Avenue, 56 Weyandt Hall, Indiana, PA 15705, USA

3. Graduate Institute of Electronics Engineering, Department of Electrical Engineering, National Taiwan University, Taipei 10617, Taiwan

Abstract

Experimental and theoretical assessments of phonon and optical characteristics are methodically accomplished for comprehending the vibrational, structural, and electronic behavior of InP1−xSbx/n-InAs samples grown by Gas-Source Molecular Beam Epitaxy. While the polarization-dependent Raman scattering measurements revealed InP-like doublet covering optical modes (ωLOInP~350 cm−1, ωTOInP~304 cm−1) and phonons activated by disorders and impurities, a single unresolved InSb-like broadband is detected near ~195 cm−1. In InP1−xSbx, although no local vibrational (InSb:P; x → 1) and gap modes (InP:Sb; x → 0) are observed, the Raman line shapes exhibited large separation between the optical phonons of its binary counterparts, showing features similar to the phonon density of states, confirming “two-mode-behavior”. Despite the earlier suggestions of large miscibility gaps in InP1−xSbx epilayers for x between 0.02 and 0.97, our photoluminescence (PL) results of energy gaps insinuated achieving high-quality single-phase epilayers with x ~ 0.3 in the miscibility gap. Complete sets of model dielectric functions (MDFs) are obtained for simulating the optical constants of binary InP, InSb, and ternary InP1−xSbx alloys in the photon energy (0 ≤ E ≤ 6 eV) region. Detailed MDF analyses of refractive indices, extinction coefficients, absorption and reflectance spectra have exhibited results in good agreement with the spectroscopic ellipsometry data. For InP0.67Sb0.33 alloy, our calculated lowest energy bandgap E0 ~ 0.46 eV has validated the existing first-principles calculation and PL data. We feel that our results on Raman scattering, PL measurements, and simulations of optical constants provide valuable information for the vibrational and optical traits of InP1−xSbx/n-InAs epilayers and can be extended to many other technologically important materials.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3