Effect of Laser Conditioning on Surface Modification and Laser Damage Resistance of SiO2 Antireflection Film

Author:

Zhang Lijuan1,Jiang Xiaolong1,Chen Jing1,Zhang Chuanchao1,Yan Lianghong1,Wang Haijun1,Luan Xiaoyu1,Liao Wei1,Jiang Xiaodong1,Jiang Yong2

Affiliation:

1. Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang 621900, China

2. College of Mathematics and Science, Southwest University of Science and Tecnnology, Mianyang 621900, China

Abstract

SiO2 sol-gel antireflection film coated on fused silica can reduce the reflection loss and improve the transmittance of the optical component, although it is still prone to laser induced damage. Laser conditioning is an effective way to improve the laser induced damage threshold (LIDT) of SiO2 sol-gel antireflection film. In this paper, single-layer SiO2 sol-gel antireflection films pretreated by triple-frequency laser with different parameters are characterized by the macroscopical parameters, such as transmittance, refractive index, and thickness. The law of surface modification and the defect removal mechanism of the SiO2 sol-gel antireflection film by laser conditioning are obtained. It is found that laser conditioning can reduce the thickness of the film and introduce densification. In addition, laser conditioning can eliminate micro-defects, such as vacancies and voids in the preparation of SiO2 sol-gel antireflection films, which is the main reason to improve the laser damage resistance of films. Finally, the laser conditioning process with three step laser energy combinations of (0.2–0.6–1.0) Fth0 (zero damage threshold) is the best one to obtain high transmittance, and excellent effects on structure modification and defect removal of films. The research in this paper provides data support for the engineering application and mechanism research of laser conditioning.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3