The Crystal Structure of Calcium Sebacate by X-ray Powder Diffraction Data

Author:

Lopresti Mattia1ORCID,Milanesio Marco1ORCID,Palin Luca12ORCID

Affiliation:

1. Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale T. Michel 11, 15121 Alessandria, Italy

2. Nova Res s.r.l., Via D. Bello 3, 28100 Novara, Italy

Abstract

Sodium sebacate salts have several industrial applications as additives, lubricants, and a metal self-healing promoter in general industry, and some derivatives also have wide applications in cosmetics and pharmaceutical fields. Calcium sebacate formation and precipitation can be detrimental for the systems where sodium sebacate is used. It is thus important to investigate their crystallization features. Sodium and calcium sebacate were prepared, purified, and crystallized with different approaches to carry out a full X-ray diffraction powder diffraction structural analysis since suitable single crystals cannot be obtained. The calcium sebacate crystal structure was solved by simulated annealing. Calcium ions form layers connected by straight “all trans” sebacate molecules, a conformation that is also suggested by Fourier-transform infrared spectroscopy FTIR data. Water molecules are caged within calcium layers. The crystal structure is characterized by the calcium layers bent by 10.65° with respect to the plane where sebacate chains lie, different from other dicarboxilic salts, such as cesium suberate, where the layers are perpendicular to the cation planes. The sodium sebacate crystal structure resulted in being impossible to be solved, despite several crystallization attempts and the different data collection approaches. FTIR spectroscopy indicates marked differences between the structures of calcium and sodium sebacate, suggesting a different type of metal coordination by carboxyls. Calcium sebacate shows a bis-bidentate chelating and bridging configuration ((κ2)−(κ1−κ1)−μ3−Carb), while for sodium sebacate, FTIR spectroscopy indicates an ionic interaction between sodium and the carboxyls. A thermogravimetric analysis TGA was carried out to assess the hydration states of the two salts. Calcium sebacate shows, as expected, a total weight loss of ca. 7%, corresponding to the single water molecule located in the crystal structure, while sodium sebacate shows no weight loss before total combustion, indicating that its structure is not hydrated. Scanning electron microscopy SEM images show different morphologies for calcium and sodium salts, probably a consequence of the different interactions at the molecular lever suggested by FTIR and TGA. The used approach can be extended to fatty acid salt in general, a still under-explored field because of the difficulty of growing suitable single crystals.

Funder

Università del Piemonte Orientale

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3