Effect of the Cu/Mg Ratio on Mechanical Properties and Corrosion Resistance of Wrought Al–Cu–Mg–Ag Alloy

Author:

Alshammari Talal Talib1ORCID,Ijaz Muhammad Farzik1ORCID,Alharbi Hamad F.1ORCID,Soliman Mahmoud S.1ORCID

Affiliation:

1. Mechanical Engineering Department, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia

Abstract

The present study aimed to investigate the influence of magnesium (Mg) on the mechanical properties and corrosion behavior of wrought Al–4Cu–xMg–0.6Ag alloys. The results from Optical Microscope, SEM, XRD analysis, and Thermo-Calc simulation were used to identify the microstructure formed after the aging process. Testing for hardness and tensile strength was conducted, in addition to corrosion testing. It was found that Mg significantly impacts the hardness of the alloys, with a high Mg content (low Cu/Mg ratio) increasing the hardness but reducing the tensile strength and ductility. This study attributed this to the formation of the S phase, which is dependent on both the quantity in the bulk and the size of the phase. The grain size was found to be finer with a higher Mg content, since the particle size inhibits grain growth during the artificial aging process. Counterintuitively, the corrosion activity was reduced in the high-Mg-content alloy due to its large particle size and the reduced galvanic cell effect. This study highlighted the importance of considering the effects of Mg on the mechanical properties and corrosion behavior of Al–Cu–Mg–Ag alloys.

Funder

King Saud University

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3