First-Principles Study of the Structural, Mechanical and Thermodynamic Properties of Al11RE3 in Aluminum Alloys

Author:

Fan Touwen12,Lin Lan1,Liang Houjiang1,Ma Yuhong1,Tang Yuwei1,Hu Te2,Ruan Zixiong1,Chen Dongchu2,Wu Yuanzhi1

Affiliation:

1. School of Science, and Research Institute of Automobile Parts Technology, Hunan Institute of Technology, Hengyang 421002, China

2. School of Material Science and Hydrogen Energy Engineering, Foshan University, Foshan 528001, China

Abstract

The stability and mechanical and thermodynamic properties of Al11RE3 intermetallics (RE = Sc, Y and lanthanide La-Lu) have been investigated by combining first-principles and Debye model calculations. It was found that the formation enthalpies of the Al11RE3 intermetallics are all negative, indicating that they are stable; moreover, the experimental values of Al11La3 and Al11Ce3 are in good agreement with the predicted values, which are −0.40 kJ/mol and −0.38 kJ/mol, respectively. The calculated results of the mechanical properties reveal that the Young’s modulus E and shear modulus G of Al11RE3 (RE = La, Ce, Pr, Nd and Sm) intermetallics are obviously greater than that of Al, implying that the stiffness, toughness, and tensile strength of them are significantly greater than those of aluminum, and that they, as strengthen phases, can effectively improve the mechanical property of aluminum alloys. The Poisson’s ratio v of Al11Sc3 (0.37) is the largest, and the heterogeneity is obvious. All the Al11RE3 intermetallics can enhance the thermostability of the aluminum because of their lower Gibbs free energy F in the range of −5.002~−4.137 eV/atom and thermal expansion coefficient α of Al in the range of 2.34~2.89 × 10−5/K at 300K, as well as higher entropy and constant volume-specific heat than aluminum at finite temperatures. With an increase in the atomic number, different change trends were observed for the formation enthalpy ΔHf, bulk modulus B, Young’s modulus E, and shear modulus G. This paper can provide ideas and help for designing a high-performance, heat-resistant aluminum alloy.

Funder

R & D plan for key areas in Guangdong Province

R & D plan for key areas in Jiangxi Province

Scientific Research Project of Hunan Institute of Technology

Natural Science Foundation of China

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3