Affiliation:
1. Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya Nab., 199034 Saint Petersburg, Russia
2. Institute of Chemistry and Pharmaceutical Technologies, Altai State University, Lenin av. 61, 656049 Barnaul, Russia
Abstract
The cocrystallization of trans-[PtI2(NCN(CH2)5)2] and iodoform (CHI3) yields crystalline adduct trans-[PtI2(NCN(CH2)5)2]∙2CHI3, the structure of which was studied via single-crystal X-ray diffractometry (XRD). In the XRD structure of trans-[PtI2(NCN(CH2)5)2]∙2CHI3, apart from rather predictable C–H∙∙∙I hydrogen bonds (HBs) and C−I∙∙∙I halogen bonds (XBs) with the iodide ligands, we identified C–I∙∙∙Pt metal-involving XBs, where the platinum center functions as an XB acceptor (that includes a metal dz2-orbital) toward the σ-holes of I atoms of CHI3. DFT calculations (PBE-D3/jorge-TZP-DKH with plane waves in the GAPW method) were carried out in the CP2K program for isolated molecules, complex–iodoform clusters, and crystal models with periodic boundary conditions, where the noncovalent nature and the existence of the interactions were confirmed using charge analysis, Wiberg bond indexes, and QTAIM topology analysis of electron density, whereas the philicities of the noncovalent partners were proved using charge analysis, electron localization function, electron density deformation, and one-electron potential projections, as well as electron density/electrostatic potential profiles for cluster models and electrostatic potential surfaces (ρ = 0.001 a.u.) for isolated molecules.
Funder
Russian Science Foundation
Subject
Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献