Electrostimulation and Nanomanipulation of Two-Dimensional MoO3-x Layers Grown on Graphite

Author:

Nadolska Aleksandra1ORCID,Kowalczyk Dorota A.1ORCID,Lutsyk Iaroslav1,Piskorski Michał1,Krukowski Paweł1ORCID,Dąbrowski Paweł1,Le Ster Maxime1,Kozłowski Witold1,Dunal Rafał1,Przybysz Przemysław1,Ryś Wojciech1,Toczek Klaudia1ORCID,Kowalczyk Paweł J.1,Rogala Maciej1ORCID

Affiliation:

1. Department of Solid State Physics, Faculty of Physics and Applied Informatics, University of Lodz, Pomorska 149/153, 90-236 Lodz, Poland

Abstract

Molybdenum trioxide shows many attractive properties, such as a wide electronic band gap and a high relative permittivity. Monolayers of this material are particularly important, as they offer new avenues in optoelectronic devices, e.g., to alter the properties of graphene electrodes. Nanoscale electrical characterization is essential for potential applications of monolayer molybdenum trioxide. We present a conductive atomic force microscopy study of an epitaxially grown 2D molybdenum oxide layer on a graphene-like substrate, such as highly oriented pyrolytic graphite (HOPG). Monolayers were also investigated using X-ray photoelectron spectroscopy, atomic force microscopy (semi-contact and contact mode), Kelvin probe force microscopy, and lateral force microscopy. We demonstrate mobility of the unpinned island under slight mechanical stress as well as shaping and detachment of the material with applied electrical stimulation. Non-stoichiometric MoO3-x monolayers show heterogeneous behavior in terms of electrical conductivity, which can be related to the crystalline domains and defects in the structure. Different regions show various I–V characteristics, which are correlated with their susceptibility to electrodegradation. In this work, we cover the existing gap regarding nanomanipulation and electrical nanocharacterization of the MoO3 monolayer.

Funder

National Science Center

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3