Affiliation:
1. Department of Chemistry, College of Science, University of Bisha, Bisha 61922, Saudi Arabia
2. Department of Physics, College of Science, University of Bisha, Bisha 61922, Saudi Arabia
Abstract
The aim of the current study was to develop a novel triphenylaniline-based porous organic polymer (TPABPOP-1) by the Friedel–Crafts reaction for the efficient elimination of Pb(II) from an aqueous environment. XPS, FTIR, SEM, TGA, and 13C CP/MAS NMR analyses were applied to characterize the synthesized TPABPOP-1 polymer. The BET surface area of the TPABPOP-1 polymer was found to be 1290 m2/g. FTIR and XPS techniques proved the uptake of Pb(II) was successfully adsorbed onto TPABPOP-1. Using batch methods, Pb(II) ion adsorption on the TPABPOP-1 was studied at different equilibrium times, pH values, initial Pb(II) concentration, adsorption mass, and temperature. The outcomes exhibited that the optimum parameters were t: 180 min, m: 0.02 g, pH: 5, T: 308 K, and [Pb(II)]: 200 mg/L. Nonlinear isotherms and kinetics models were investigated. The Langmuir isotherm model suggested that the uptake of Pb(II) was favorable on the homogeneous surface of TPABPOP-1. Adsorption kinetics showed that the PFO model was followed. Pb(II) removal mechanisms of TPABPOP-1 may include surface adsorption and electrostatic attraction. The uptake capacity for Pb(II) was identified to be 472.20 mg/g. Thermodynamic factors exhibited that the uptake of Pb(II) was endothermic and spontaneous in standard conditions. Finally, this study provides effective triphenylaniline-based porous organic polymers (TPABPOP-1) as a promising adsorbent with high uptake capacity.
Funder
Ministry of Education in Saudi Arabia
search and innovation agency, the Ministry of Education
Subject
Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献