Exploring the Impact of Cooling Rate on Microstructural Features, Mechanical Properties, and Corrosion Resistance of a Novel Nb-Stabilized Super Duplex Stainless Steel in Shielded Metal Arc Welding

Author:

Oñate Ángelo12ORCID,Torres Enrique1,Olave Diego1,Ramírez Jesús1,Medina Carlos3ORCID,Sanhueza Juan Pablo1ORCID,Melendrez Manuel1ORCID,Tuninetti Víctor4ORCID,Rojas David1

Affiliation:

1. Department of Materials Engineering (DIMAT), Faculty of Engineering, Universidad de Concepción, Edmundo Larenas 315, Concepción 4030000, Chile

2. Department of Mechanical Engineering (DIMEC), Faculty of Engineering, Universidad del Bío-Bío, Av. Collao 1202, Concepción 4030000, Chile

3. Department of Mechanical Engineering (DIM), Faculty of Engineering, Universidad de Concepción, Edmundo Larenas 219, Concepción 4030000, Chile

4. Department of Mechanical Engineering, Universidad De La Frontera, Francisco Salazar 01145, Temuco 4780000, Chile

Abstract

The corrosion and mechanical response produced by quenching in the welded joint of a new Nb-doped stainless steel designed by the CALPHAD method and produced by open-atmosphere casting with recycled materials were investigated to contribute to the circular economy and to establish disruptive manufacturing criteria based on metallurgical principles. The steel was initially subjected to solubilization heat treatment and partial solubilization treatment at 1090 °C to obtain an appropriate α/γ balance and carbide solubilization. It was then welded by the SMAW process, quenched, and tempered at three different cooling rates. As a result, a good fit between the phases predicted by the CALPHAD method and those observed by X-ray diffraction and scanning electron microscopy were obtained, with minor differences attributable to the precipitation and diffusion kinetics required for dissolution or nucleation and growth of the phases in the system. The forced air quenching mechanism was identified as providing an α/γ phase equilibrium equivalent to 62/38 as the most effective quenching method for achieving the optimum mechanical and corrosion response, even with the post-weld σ phase and showing superior results to those of the base metal. The outstanding mechanical and corrosion responses resulted from a proper balance of the primary phases in the duplex steel with a precipitation-strengthening mechanism. The damage tolerance obtained by forced air quenching was superior to that obtained by water and air quenching, with a PSE of 24.71 GPa% post-welding.

Funder

Universidad de Concepción

Fondecyt

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3