Piperazine Derivative Stabilizes Actin Filaments in Primary Fibroblasts and Binds G-Actin In Silico

Author:

Zernov NikitaORCID,Ghamaryan Viktor,Makichyan AniORCID,Melenteva Daria,Hunanyan LernikORCID,Popugaeva ElenaORCID

Abstract

Alzheimer’s disease (AD) is characterized by synaptic dysfunction, which is expressed through the loss of dendritic spines and changes in their morphology. Pharmacological compounds that are able to protect spines in the AD brain are suggested to be novel drugs that would be able to slow down the disease progression. We have recently shown that a positive modulator of transient receptor potential cation channel subfamily C member 6 (TRPC6), the compound N-(2-chlorophenyl)-2-(4-phenylpiperazine-1-yl) acetamide (51164), causes the upregulation of postsynaptic neuronal store-operated calcium entry, maintains mushroom spine percentage, and recovers synaptic plasticity in amyloidogenic mouse models of Alzheimer’s disease. Here, using confocal microscopy and calcium imaging methods, we present the experimental data indicating that 51164 possesses an alternative mechanism of action. We demonstrated that 51164 can increase the mushroom spine percentage in neurons with the downregulated activity of TRPC6-dependent neuronal store-operated calcium entry. Moreover, we report the binding of 51164 to G-actin in silico. We observed that 51164 interacts with Lys 336, Asp157, and Ser14 of G-actin, amino acids involved in the stabilization/polymerization of the G-actin structure. We showed that interactions of 51164 with G-actin are much stronger in comparison to the well-characterized F-actin stabilizing and polymerizing drug, jasplakinolide. The obtained results suggest an alternative protective mechanism of 51164 that is related to the preservation of actin filaments in vitro.

Funder

Russian Science Foundation

Ministry of Science and Higher Education of the Russian Federation

Peter the Great St. Petersburg Polytechnic University

Publisher

MDPI AG

Subject

Microbiology (medical),Molecular Biology,General Medicine,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3