The Management of Na-Tech Risk Using Bayesian Network

Author:

Ancione GiuseppaORCID,Milazzo Maria FrancescaORCID

Abstract

In the last decades, the frequency and severity of Natural-Technological events (i.e., industrial accidents triggered by natural phenomena or Na-Techs) increased. These could be more severe than simple technological accidents because the natural phenomenon could cause the prevention/mitigation/emergency systems fail. The dynamic assessment of the risk associated with these events is essential for a more effective prevention and mitigation of the consequences and emergency preparation. The main goal of this study is the development of a fast and dynamic tool for the risk manager. An approach supporting the management of the consequence is presented. It is based on the definition of a risk-related index, presented in the form of a discrete variable that combines frequency and magnitude of the events and other factors contributing to the worsening of Na-Tech. A properly designed Geographical Information System (GIS) allows the collection and processing of territorial information with the aim to create new data contributing to the quantification of the Na-Tech risk index. A Bayesian network has been built which efficiently lends in including within the model multiple elements with a direct or indirect impact on the distribution of risk levels. By means of this approach, a dynamic updating of the risk index is made. The proposed approach has been applied to an Italian case-study.

Funder

INAIL

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3