A Comparative Study of a Machine Learning Approach and Response Surface Methodology for Optimizing the HPT Processing Parameters of AA6061/SiCp Composites

Author:

El-Garaihy Waleed H.12ORCID,Alateyah Abdulrahman I.1ORCID,Shaban Mahmoud34ORCID,Alsharekh Mohammed F.3ORCID,Alsunaydih Fahad Nasser3ORCID,El-Sanabary Samar5ORCID,Kouta Hanan5,El-Taybany Yasmine5,Salem Hanadi G.6ORCID

Affiliation:

1. Department of Mechanical Engineering, College of Engineering, Qassim University, Unaizah 56452, Saudi Arabia

2. Mechanical Engineering Department, Faculty of Engineering, Suez Canal University, Ismailia 41522, Egypt

3. Department of Electrical Engineering, College of Engineering, Qassim University, Unaizah 56452, Saudi Arabia

4. Department of Electrical Engineering, Faculty of Engineering, Aswan University, Aswan 81542, Egypt

5. Department of Production Engineering and Mechanical Design, Port Said University, Port Fouad 42526, Egypt

6. Mechanical Engineering Department, The American University in Cairo, Cairo 11835, Egypt

Abstract

This work investigates the efficacy of high-pressure torsion (HPT), as a severe plastic deformation mechanism for processing plain and silicon-carbide-reinforced AA6061, with the broader objective of using the technique for improving the properties of lightweight materials for a range of objectives. The interactions between input variables, such as the pressure and equivalent strain (εeq) applied during HPT processing, and the presence of SiCp and response variables, like the relative density, grain refinement, homogeneity of the structure, and the mechanical properties of the AA6061 aluminum matrix, were investigated. Hot compaction (HC) of the mixed powders followed by HPT were employed to produce AA6061 discs with and without 15% SiCp. The experimental findings were then analyzed statistically using the response surface methodology (RSM) and a machine learning (ML) approach to predict the output variables and to optimize the input parameters. The optimum combination of HPT process parameters was confirmed by the genetic algorithm (GA) and ML approaches. Furthermore, the constructed ML and RSM models were validated experimentally by HPT processing the same material under new conditions not fed into the models and comparing the experimental results to those predicted by the model. From the ML and RSM models, it was found that processing the AA6061/SiCp composite HPT via four revolutions at 3 GPa produced the highest mechanical properties coupled with significant grain refinement compared to the HC condition. ML analysis revealed that the equivalent strain induced by the number of revolutions was the most effective parameter for grain refinement, whereas the presence of SiCp played the highest role in improving both the hardness values and the compressive strength of the AA6061 matrices.

Publisher

MDPI AG

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Mechanics of Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3