Uniform Droplet Spraying of Magnesium Alloys: Modeling of Apollonian Fractal Structures on Micrograph Sections

Author:

Liao Yiliang1,Kostoglou Nikolaos2ORCID,Rebholz Claus3ORCID,Doumanidis Charalabos C.4

Affiliation:

1. Department of Industrial and Manufacturing Systems Engineering, Iowa State University, Ames, IA 50011, USA

2. Department of Materials Science, Montanuniversität Leoben, 8700 Leoben, Austria

3. Department of Mechanical & Manufacturing Engineering, University of Cyprus, CY-1678 Nicosia, Cyprus

4. W.B. Burnsed Jr. Department of Mechanical, Aerospace and Biomedical Engineering, University of South Alabama, Mobile, AL 36688, USA

Abstract

A variety of advanced manufacturing processes have been developed based on the concept of rapid solidification processing (RSP), such as uniform droplet spraying (UDS) for the additive manufacturing of metals and alloys. This article introduces a morphological simulation of fractal dendric structures deposited by UDS of magnesium (Mg) alloys on two-dimensional (2D) planar sections. The fractal structure evolution is modeled as Apollonian packs of generalized ellipsoidal domains growing out of nuclei and dendrite arm fragments. The model employs descriptions of the dynamic thermal field based on superposed Green’s/Rosenthal functions with source images for initial/boundary effects, along with alloy phase diagrams and the classical solidification theory for nucleation and fragmentation rates. The initiation of grains is followed by their free and constrained growth by adjacent domains, represented via potential fields of level-set methods, for the effective mapping of the solidified topology and its metrics (grain size and fractal dimension of densely packed domains). The model is validated by comparing modeling results against micrographs of three UDS-deposited Mg–Zn–Y alloys. The further evolution of this real-time computational model and its application as a process observer for feedback control in 3D printing, as well as for off-line material design and optimization, is discussed.

Publisher

MDPI AG

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3