Fabrication of Bimetallic High-Strength Low-Alloy Steel/Si-Bronze Functionally Graded Materials Using Wire Arc Additive Manufacturing

Author:

El-Husseiny Marwan M.1ORCID,Baraka Abdelrahman A.2,Oraby Omar2ORCID,El-Danaf Ehab A.1,Salem Hanadi G.2ORCID

Affiliation:

1. Department of Mechanical Design and Production, Faculty of Engineering, Cairo University, Giza 12316, Egypt

2. Additive Manufacturing Centennial Lab (AMCL), Mechanical Engineering Department, The American University in Cairo, Cairo 11835, Egypt

Abstract

In this paper, bimetallic functionally graded structures were fabricated using wire and arc additive manufacturing (WAAM). The bimetallic walls were built by depositing Si-Bronze and high-strength low-alloy (HSLA) steel, successively. The microstructural evolution of the built structures, especially within the fusion zone between the dissimilar alloys, was investigated in relation to their mechanical properties. The built bimetallic walls showed a high level of integrity. An overall interface length of 9 mm was investigated for microstructural evolution, elemental mapping and microhardness measurements along the building direction. Microhardness profiles showed a gradual transition in hardness passing through the diffusion zone with no evidence for intermetallic compounds. Failure of the tensile specimens occurred at the Si-Bronze region, as expected. Bending tests confirmed good ductility of the joint between the dissimilar alloys. Direct shear test results proved a shear strength comparable to that of HSLA steel. The obtained results confirm that it is appropriate to fabricate HSLA steel/Si-Bronze FGMs using WAAM technology.

Funder

The American University in Cairo

Publisher

MDPI AG

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Mechanics of Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3