Correlating Ultrasonic Velocity in DC04 with Microstructure for Quantification of Ductile Damage

Author:

Wackenrohr Steffen1ORCID,Herbst Sebastian1ORCID,Wöbbeking Patrick1,Gerstein Gregory1,Nürnberger Florian1ORCID

Affiliation:

1. Institut für Werkstoffkunde (Materials Science), Leibniz Universität Hannover, An der Universität 2, 30823 Garbsen, Germany

Abstract

The detection of ductile damage by image-based methods is time-consuming and typically probes only small areas. It is therefore of great interest for various cold forming processes, such as sheet-bulk metal forming, to develop new methods that can be used during the forming process and that enable an efficient detection of ductile damage. In the present study, ductile damage in DC04 was examined using ultrasonic testing. First, different grain sizes were set by heat treatment. Subsequently, the sheet metal was formed by cold rolling. A clear correlation between the average void diameter and the measured ultrasonic velocity could be shown. The ultrasonic velocity showed a clear decrease when the average void size increased because of the increasing forming degree. The ultrasonic measurements were finally employed to calculate a damage parameter D to determine the amount of ductile damage in the microstructure for different grain sizes after cold rolling.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3