Fracture Characterisation and Modelling of AHSS Using Acoustic Emission Analysis for Deep Drawing

Author:

Stockburger Eugen1,Wester Hendrik1,Behrens Bernd-Arno1

Affiliation:

1. Institute of Forming Technology and Machines (IFUM), Leibniz Universität Hannover, 30823 Garbsen, Germany

Abstract

Driven by high energy prices, AHSS are still gaining importance in the automotive industry regarding electric vehicles and their battery range. Simulation-based design of forming processes can contribute to exploiting their potential for lightweight design. Fracture models are frequently used to predict the material’s failure and are often parametrised using different tensile tests with optical measurements. Hereby, the fracture is determined by a surface crack. However, for many steels, the fracture initiation already occurs inside the specimen prior to a crack on the surface. This leads to inaccuracies and more imprecise fracture models. Using a method that detects the fracture initiation within the specimen, such as acoustic emission analysis, has a high potential to improve the modelling accuracy. In the presented paper, tests for fracture characterisation with two AHSS were performed for a wide range of stress states and measured with a conventional optical as well as a new acoustical measurement system. The tests were analysed regarding the fracture initiation using both measurement systems. Numerical models of the tests were created, and the EMC fracture model was parametrised based on the two evaluation areas: a surface crack as usual and a fracture from the inside as a novelty. The two fracture models were used in a deep drawing simulation for analysis, comparison and validation with deep drawing experiments. It was shown that the evaluation area for the fracture initiation had a significant impact on the fracture model. Hence, the failure prediction of the EMC fracture model from the acoustic evaluation method showed a higher agreement in the numerical simulations with the experiments than the model from the optical evaluation.

Funder

German Research Foundation

Publisher

MDPI AG

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3