Affiliation:
1. Department of Mechanical Engineering, Universitas Indonesia, Kampus UI, Depok 16424, Indonesia
Abstract
Magnesium is a suitable candidate material for temporary implant applications, such as a miniplate, due to its biocompatibility, density, and elastic modulus comparable to that of human bone. The biodegradability property of magnesium can minimize the need for a second surgery after the healing process, thereby reducing costs and pain for patients. On the other hand, microforming is a promising technology for manufacturing miniplates with high production rates and good mechanical properties. However, the application of magnesium in microforming is limited and remains a challenge in resolving issues related to the size effect in microforming and the low formability of magnesium, especially at room temperature. Grain refinement and homogenization are alternative approaches to controlling the size effect in magnesium microforming and improving formability. As the grain refinement process influences the mechanical and corrosion behavior of magnesium, this research shows that the grain refinement process for pure magnesium improves the overall performance of the microforming process for implant applications.
Funder
Penelitian Dasar Unggulan Perguruan Tinggi, Ministry of Education, Culture, Research and Technology
Subject
Industrial and Manufacturing Engineering,Mechanical Engineering,Mechanics of Materials
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献