Contact Temperature Measurements on Hybrid Aluminum–Steel Workpieces in a Cross-Wedge Rolling Process

Author:

Merkel Paulina1ORCID,Kruse Jens1,Kriwall Mareile1,Behrens Bernd-Arno12,Stonis Malte1

Affiliation:

1. IPH—Institut für Integrierte Produktion Hannover gGmbH, Hollerithallee 6, 30419 Hanover, Germany

2. Institute of Forming Technology and Machines, An d. Universität 2, 30823 Garbsen, Germany

Abstract

The Collaborative Research Center 1153 is investigating a novel process chain for manufacturing high-performance hybrid components. The combination of aluminum and steel can reduce the weight of components and lead to lower fuel consumption. During the welding of aluminum and steel, a brittle intermetallic phase is formed that reduces the service life of the component. After welding, the workpiece is heated inhomogeneously and hot-formed in a cross-wedge rolling process. Since the intermetallic phase grows depending on the temperature during hot forming, temperature control is of great importance. In this paper, the possibility of process-integrated contact temperature measurement with thin-film sensors is investigated. For this purpose, the initial temperature distribution after induction heating of the workpiece is determined. Subsequently, cross-wedge rolling is carried out, and the data of the thin-film sensors are compared to the temperature measurements after heating. It is shown that thin-film sensors inserted into the tool are capable of measuring surface temperatures even at a contact time of 0.041 s. The new process monitoring of the temperature makes it possible to develop a better understanding of the process as well as to further optimize the temperature distribution. In the long term, knowledge of the temperatures in the different materials also makes it possible to derive quality characteristics as well as insights into the causes of possible process errors (e.g., fracture of the joining zone).

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3