Study of the Photocatalytic Activity of TiO2 and Fe2+ in the Activation of Peroxymonosulfate

Author:

González-Quiles RodrigoORCID,de Andrés Juan ManuelORCID,Rodríguez-Chueca JorgeORCID

Abstract

The increase in world population and human activities are leading to an increase in water stress in many regions of the planet, coupled with a decrease in the quality of water bodies. Advanced oxidation processes have demonstrated great potential for the reduction of almost any organic pollutant; however, it is necessary to intensify this type of treatment in order to reduce contact times and to reach a greater number of pollutants. The generation of sulfate radicals by activation of peroxymonosulfate (PMS) by divalent iron (Fe2+) and/or titanium dioxide (TiO2) were statistically studied to understand the role of these compounds as activators, using methylene blue as target pollutant because of its ease of handling and analysis. A factorial experimental design was used to study the influence of different variables (PMS, Fe2+, and TiO2) in the presence of UV-A or UV-C. There were relevant differences in the discoloration of methylene blue when analyzing the size of the effects and significance of the experiments, when UV-A or UV-C was used, being faster with UV-C. For instance, total discoloration of methylene blue was reached after 60 min with the system PMS/UV-C, while after 90 min only the 59% of methylene blue disappeared in presence of PMS/UV-A. Both Fe2+ and TiO2 in combination with PMS and UV increased the discoloration effect. So, in the presence of Fe2+, total discoloration of methylene blue was observed after 30 min in presence of UV-A, while this yield was reached in 7.5 min under UV-C. In the case of PMS/TiO2, it required 60 min under UV-A radiation to totally remove methylene blue, and around 15 min with UV-C. Statistically, the three variables were observed to have the main effect in combination with UV. Furthermore, the PMS/Fe2+ system has a significant interaction with UV-A and UV-C radiation, while the interaction of PMS/TiO2 was significant under UV-A, but with a negative effect under UV-C, or in other words the high elimination rates observed are achieved by the oxidation potential of UV-C, and the effect of PMS and TiO2 by itself.

Funder

Comunidad de Madrid

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3