Hydrogeochemical Variability of the Acidic Springs in the Rio Tinto Headwaters

Author:

Allman Christopher John,Gómez-Ortiz DavidORCID,Burke Andrea,Amils RicardoORCID,Rodriguez NuriaORCID,Fernández-Remolar David

Abstract

Peña de Hierro, located in southwest Spain, encompasses the springs and headwaters for the Rio Tinto River that emerge above normal faults and has been mined for its rich sulfide ore since 2500 BC. The springs are typically characterized by an orange coloration, typical pH of ~2.33, and contain elevated concentrations of heavy metals that are produced by acid rock drainage (ARD). ARD is a natural phenomenon that results from chemolithoautotrophs metabolizing the sulfide ore. Mining has amplified the magnitude of the acidity and concentrations of heavy metals evidenced within sedimentary cores from the Huelva estuary. Acidity, redox state, hydrochemistry and isotopic analyses were examined for the purpose of characterizing the subsurface flows and determining the interconnectivity of the groundwaters. Previous studies have documented the geochemistry of the springs, dating a select few, yet many springs remain uncharacterized. Acidity presented spatial variability throughout the field area, caused by extensive sulfide interactions which generated and modified the pH. Redox exhibited a large range of values due to oxygen diffusivity though the fracture network. The surrounding geology is highly heterogeneous because of intensive deformation during the Variscan and Tertiary periods, and this heterogeneity is shown in the varied aqueous chemistry. Fractionation patterns observed in δ2H and δ18O values predominantly reflected enrichment by intensive evaporation and depletion in δ18O as a result of the proposed sulfatic-water model for Rio Tinto’s hydrogeology. The analysis illustrates minimal hydrologic interconnectivity, evidenced by the extensive physical and chemical contrasts within such a small proximity.

Funder

MICINN

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3