A Blockchain-Based Authentication Protocol for Cooperative Vehicular Ad Hoc Network

Author:

Akhter A. F. M. SuaibORCID,Ahmed MohiuddinORCID,Shah A. F. M. ShahenORCID,Anwar AdnanORCID,Kayes A. S. M.ORCID,Zengin Ahmet

Abstract

The efficiency of cooperative communication protocols to increase the reliability and range of transmission for Vehicular Ad hoc Network (VANET) is proven, but identity verification and communication security are required to be ensured. Though it is difficult to maintain strong network connections between vehicles because of there high mobility, with the help of cooperative communication, it is possible to increase the communication efficiency, minimise delay, packet loss, and Packet Dropping Rate (PDR). However, cooperating with unknown or unauthorized vehicles could result in information theft, privacy leakage, vulnerable to different security attacks, etc. In this paper, a blockchain based secure and privacy preserving authentication protocol is proposed for the Internet of Vehicles (IoV). Blockchain is utilized to store and manage the authentication information in a distributed and decentralized environment and developed on the Ethereum platform that uses a digital signature algorithm to ensure confidentiality, non-repudiation, integrity, and preserving the privacy of the IoVs. For optimized communication, transmitted services are categorized into emergency and optional services. Similarly, to optimize the performance of the authentication process, IoVs are categorized as emergency and general IoVs. The proposed cooperative protocol is validated by numerical analyses which show that the protocol successfully increases the system throughput and decreases PDR and delay. On the other hand, the authentication protocol requires minimum storage as well as generates low computational overhead that is suitable for the IoVs with limited computer resources.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Blockchain-Based Mutual Authentication Method to Secure the Electric Vehicles’ TPMS;IEEE Transactions on Industrial Informatics;2024-01

2. Blockchain Assisted Intra-Twin and Inter-Twin Authentication Scheme for Vehicular Digital Twin System;IEEE Transactions on Intelligent Transportation Systems;2024

3. Plant Leaf Disease Classification Using GAN;Lecture Notes in Networks and Systems;2024

4. Deep Learning-based Intelligent Algorithms for Effective Transmission Authentication and Anomaly Identification in Vehicular Networks;2023 International Conference on Innovative Computing, Intelligent Communication and Smart Electrical Systems (ICSES);2023-12-14

5. A distributed message authentication scheme with reputation mechanism for Internet of Vehicles;Journal of Systems Architecture;2023-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3