Electronic Properties and Mechanical Stability of Multi-Ion-Co-Intercalated Bilayered V2O5

Author:

Ma Chunhui1,Zhou Bo1

Affiliation:

1. Institute of Modern Physics, Shaanxi Key Laboratory for Theoretical Physics Frontiers, Northwest University, Xi’an 710127, China

Abstract

Incorporating metal cations into V2O5 has been proven to be an effective method for solving the poor long-term cycling performance of vanadium-based oxides as electrodes for mono- or multivalent aqueous rechargeable batteries. This is due to the existence of a bilayer structure with a large interlayer space in the V2O5 electrode and to the fact that the intercalated ions act as pillars to support the layered structure and facilitate the diffusion of charged carriers. However, a fundamental understanding of the mechanical stability of multi-ion-co-intercalated bilayered V2O5 is still lacking. In this paper, a variety of pillared vanadium pentoxides with two types of co-intercalated ions were studied. The root-mean-square deviation of the V-O bonds and the elastic constants calculated by density functional theory were used as references to evaluate the stability of the intercalated compounds. The d-band center and electronic band structures are also discussed. Our theoretical results show that the structural characteristics and stability of the system are quite strongly influenced by the intercalating strategy.

Funder

the Double First-class University Construction Project of Northwest University, National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3