Crack Initiation in Compacted Graphite Iron with Random Microstructure: Effect of Volume Fraction and Distribution of Particles

Author:

Luo Xingling1ORCID,Baxevanakis Konstantinos P.1ORCID,Silberschmidt Vadim V.1ORCID

Affiliation:

1. Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough LE11 3TU, UK

Abstract

Thanks to the distinctive morphology of graphite particles in its microstructure, compacted graphite iron (CGI) exhibits excellent thermal conductivity together with high strength and durability. CGI is extensively used in many applications, e.g., engine cylinder heads and brakes. The structural integrity of such metal-matrix materials is controlled by the generation and growth of microcracks. Although the effects of the volume fraction and morphology of graphite inclusions on the tensile response of CGI were investigated in recent years, their influence on crack initiation is still unknown. Experimental studies of crack initiation require a considerable amount of time and resources due to the highly complicated geometries of graphite inclusions scattered throughout the metallic matrix. Therefore, developing a 2D computational framework for CGI with a random microstructure capable of predicting the crack initiation and path is desirable. In this work, an integrated numerical model is developed for the analysis of the effects of volume fraction and nodularity on the mechanical properties of CGI as well as its damage and failure behaviours. Finite-element models of random microstructure are generated using an in-house Python script. The determination of spacings between a graphite inclusion and its four adjacent particles is performed with a plugin, written in Java and implemented in ImageJ. To analyse the orientation effect of inclusions, a statistical analysis is implemented for representative elements in this research. Further, Johnson–Cook damage criteria are used to predict crack initiation in the developed models. The numerical simulations are validated with conventional tensile-test data. The created models can support the understanding of the fracture behaviour of CGI under mechanical load, and the proposed approach can be utilised to design metal-matrix composites with optimised mechanical properties and performance.

Funder

China Scholarship Council

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3