Strength Optimisation of Hybrid Bolted/Bonded Composite Joints Based on Finite Element Analysis

Author:

Blier Raphael1,Monajati Leila2ORCID,Mehrabian Masoud2ORCID,Boukhili Rachid2ORCID

Affiliation:

1. Department of Mechanical Engineering, Royal Military College of Canada, Kingston, ON K7K 7B4, Canada

2. Department of Mechanical Engineering, Polytechnique Montréal, Montreal, QC H3T 1J4, Canada

Abstract

A finite element analysis (FEA) was conducted to examine the behaviour of single-lap quasi-isotropic (QI) and cross-ply (CP) hybrid bolted/bonded (HBB) configurations subjected to tensile shear loading. Several critical design factors influencing the composite joint strength, failure conditions, and load-sharing mechanisms that would optimise the joining performance were assessed. The study of the stress concentration around the holes and along the adhesive layer highlights the fact that the HBB joints benefit from significantly lower stresses compared to only bolted joints, especially for CP configurations. The simulation results confirmed the redundancy of the middle bolt in a three-bolt HBB joint. The stiffness and plastic behaviour of the adhesive were found to be important factors that define the transition of the behaviour of the joint from a bolted type, where load sharing is predominant, to a bonded joint. The load-sharing potential, known as an indicator of the joint’s performance, is improved by reducing the overlap length, using a low-stiffness, high-plasticity adhesive, and using thicker laminates in the QI layup configuration. Enhancing both the ratio of the edge distance to the hole diameter and washer size proves advantageous in reducing stresses within the adhesive layer, thereby improving the joint strength.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3