Physics-Informed Online Learning for Temperature Prediction in Metal AM

Author:

Sajadi Pouyan1,Rahmani Dehaghani Mostafa1,Tang Yifan1,Wang G. Gary1ORCID

Affiliation:

1. Product Design and Optimization Laboratory, Simon Fraser University, Surrey, BC V3T 0A3, Canada

Abstract

In metal additive manufacturing (AM), precise temperature field prediction is crucial for process monitoring, automation, control, and optimization. Traditional methods, primarily offline and data-driven, struggle with adapting to real-time changes and new process scenarios, which limits their applicability for effective AM process control. To address these challenges, this paper introduces the first physics-informed (PI) online learning framework specifically designed for temperature prediction in metal AM. Utilizing a physics-informed neural network (PINN), this framework integrates a neural network architecture with physics-informed inputs and loss functions. Pretrained on a known process to establish a baseline, the PINN transitions to an online learning phase, dynamically updating its weights in response to new, unseen data. This adaptation allows the model to continuously refine its predictions in real-time. By integrating physics-informed components, the PINN leverages prior knowledge about the manufacturing processes, enabling rapid adjustments to process parameters, geometries, deposition patterns, and materials. Empirical results confirm the robust performance of this PI online learning framework in accurately predicting temperature fields for unseen processes across various conditions. It notably surpasses traditional data-driven models, especially in critical areas like the Heat Affected Zone (HAZ) and melt pool. The PINN’s use of physical laws and prior knowledge not only provides a significant advantage over conventional models but also ensures more accurate predictions under diverse conditions. Furthermore, our analysis of key hyperparameters—the learning rate and batch size of the online learning phase—highlights their roles in optimizing the learning process and enhancing the framework’s overall effectiveness. This approach demonstrates significant potential to improve the online control and optimization of metal AM processes.

Funder

Natural Sciences and Engineering Research Council (NSERC) of Canada

Publisher

MDPI AG

Reference37 articles.

1. Additive manufacturing and sustainability: An exploratory study of the advantages and challenges;Ford;J. Clean. Prod.,2016

2. Metal additive manufacturing: Technology, metallurgy and modelling;Cooke;J. Manuf. Process.,2020

3. Machine learning applications for quality improvement in laser powder bed fusion: A state-of-the-art review;Zhang;Int. J. Mater. Des.,2024

4. An investigation into specimen property to part performance relationships for laser beam powder bed fusion additive manufacturing;Shrestha;Addit. Manuf.,2019

5. A review on measurement science needs for real-time control of additive manufacturing metal powder bed fusion processes;Mani;Int. J. Prod. Res.,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3