Modeling of Concrete Deterioration under External Sulfate Attack and Drying–Wetting Cycles: A Review

Author:

Qin Shanshan1ORCID,Chen Chuyu2,Zhang Ming2

Affiliation:

1. School of Construction Engineering, Shenzhen Polytechnic University, Shenzhen 518055, China

2. School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China

Abstract

This paper comprehensively summarizes moisture transport, ion transport, and mechanical damage models applied to concrete under sulfate attack and drying–wetting cycles. It highlights the essential aspects and principles of each model, emphasizing their significance in understanding the movement of moisture and ions, as well as the resulting mechanical damage within the concrete during these degradation processes. The paper critically analyzes the assumptions made in each model, shedding light on their limitations and implications for prediction accuracy. Two primary challenges faced by current models under sulfate attack and drying–wetting cycles are identified: the limited consideration of the coupled effects of chemical and physical attacks from sulfate, and the unclear mechanism of the sulfate attacks. Future research directions are proposed, focusing on exploring the transport mechanism of sulfate ions under various driving forces and further clarifying the crystallization process and expansion damage mechanism in concrete pores. Addressing these research directions will advance our understanding of sulfate attack under drying–wetting cycles, leading to improved models and mitigation strategies for enhancing the durability and performance of concrete structures.

Funder

National Natural Science Foundations of China

Shenzhen Polytechnic University start-up project

Shenzhen Polytechnic University Research Fund

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3