Multi-Criteria Energy Management with Preference Induced Load Scheduling Using Grey Wolf Optimizer

Author:

Ayub Sara,Ayob Shahrin MdORCID,Tan Chee Wei,Arif Saad M.ORCID,Taimoor Muhammad,Aziz Lubna,Bukar Abba Lawan,Al-Tashi Qasem,Ayop RazmanORCID

Abstract

Minimizing energy costs while maintaining consumer satisfaction is a very challenging task in a smart home. The contradictory nature of these two objective functions (cost of energy and satisfaction level) requires a multi-objective problem formulation that can offer several trade-off solutions to the consumer. Previous works have individually considered the cost and satisfaction, but there is a lack of research that considers both these objectives simultaneously. Our work proposes an optimum home appliance scheduling method to obtain an optimum satisfaction level with a minimum cost of energy. To achieve this goal, first, an energy management system (EMS) is developed using a rule-based algorithm to reduce the cost of energy by efficient utilization of renewable energy resources and an energy storage system. The second part involves the development of an optimization algorithm for optimal appliance scheduling based on consumer satisfaction level, involving their time and device-based preferences. For that purpose, a multi-objective grey wolf accretive satisfaction algorithm (MGWASA) is developed, with the aim to provide trade-off solutions for optimal load patterns based on cost per unit satisfaction index (Cs_index) and percentage satisfaction (%S). The MGWASA is evaluated for a grid-connected smart home model with EMS. To ensure the accuracy of the numerical simulations, actual climatological data and consumer preferences are considered. The Cs_index is derived for six different cases by simulating (a) optimal load, (b) ideal load, and (c) base (random) load, with and without EMS. The results of MGWASA are benchmarked against other state-of-the-art optimization algorithms, namely, binary non-dominated sorting genetic algorithm-2 (NSGAII), multi-objective binary particle swarm optimization algorithm (MOBPSO), Multi-objective artificial bee colony (MOABC), and multi-objective evolutionary algorithm (MOEA). With the proposed appliance scheduling technique, a % reduction in annual energy cost is achieved. MGWASA yields Cs_index at 0.049$ with %S of 97%, in comparison to NSGAII, MOBPSO, MOABC, and MOEA, which yield %S of 95%, 90%, 92%, and 94% at 0.052$, 0.048$, 0.0485$, and 0.050$, respectively. Moreover, various related aspects, including energy balance, PV utilization, energy cost, net present cost, and cash payback period, are also analyzed. Lastly, sensitivity analysis is carried out to demonstrate the impact of any future uncertainties on the system inputs.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference41 articles.

1. Multi-objective home appliance scheduling with implicit and interactive user satisfaction modelling;Pamulapati;Appl. Energy,2020

2. International Energy Agency (2019). Energy Statistics, International Energy Agency.

3. U.S. Energy Information Administration (2019). Average Price of Electricity to Ultimate Customers.

4. Short-term smart learning electrical load prediction algorithm for home energy management systems;Tzscheutschler;Appl. Energy,2015

5. Management of loads in residential buildings installed with PV system under intermittent solar irradiation using mixed integer linear programming;Ogunjuyigbe;Energy Build.,2016

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3