Abstract
Stabilizing the Unmanned Aircraft Systems (UAS) under complex environment including system uncertainties, unknown noise and/or disturbance is so challenging. Therefore, this paper proposes an adaptive neural network based intelligent control method to overcome these challenges. Based on a class of artificial neural network, named Radial Basis Function (RBF) networks an adaptive neural network controller is designed. To handle the unknown dynamics and uncertainties in the system, firstly, we develop a neural network based identifier. Then, a neural network based controller is generated based on both the identified model of the system and the linear or nonlinear controller. To ensure the stability of the system during its online training phase, the linear or nonlinear controller is utilized. The learning capability of the proposed intelligent controller makes it a promising approach to take system uncertainties, noises and/or disturbances into account. The satisfactory performance of the proposed intelligent controller is validated based on the computer based simulation results of a benchmark UAS with system uncertainties and disturbances, such as wind gusts disturbance.
Subject
Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering
Reference25 articles.
1. Quad Rotorcraft Control: Vision-Based Hovering and Navigation;Carrillo,2012
2. Handbook of Unmanned Aerial Vehicles;Valavanis,2015
3. Adaptive Flocking Control of Multiple Unmanned Ground Vehicles by Using a UAV;Jafari,2015
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献