Exploiting the PIR Sensor Analog Behavior as Thermoreceptor: Movement Direction Classification Based on Spiking Neurons

Author:

Guerrero-Rodriguez Jose-Maria1ORCID,Cifredo-Chacon Maria-Angeles1ORCID,Cobos Sánchez Clemente1,Perez-Peña Fernando2ORCID

Affiliation:

1. Microelectronic Circuit Design Group, Engineering School, University of Cadiz, Campus Universitario de Puerto Real, Avda. Universidad de Cádiz, nº 10, CP 11519 Puerto Real, Cádiz, Spain

2. Applied Robotics Lab, Engineering School, University of Cadiz, Campus Universitario de Puerto Real, Avda. Universidad de Cádiz, nº 10, CP 11519 Puerto Real, Cádiz, Spain

Abstract

Pyroelectric infrared sensors (PIR) are widely used as infrared (IR) detectors due to their basic implementation, low cost, low power, and performance. Combined with a Fresnel lens, they can be used as a binary detector in applications of presence and motion control. Furthermore, due to their features, they can be used in autonomous intelligent devices or included in robotics applications or sensor networks. In this work, two neural processing architectures are presented: (1) an analog processing approach to achieve the behavior of a presynaptic neuron from a PIR sensor. An analog circuit similar to the leaky integrate and fire model is implemented to be able to generate spiking rates proportional to the IR stimuli received at a PIR sensor. (2) An embedded postsynaptic neuron where a spiking neural network matrix together with an algorithm based on digital processing techniques is introduced. This structure allows connecting a set of sensors to the post-synaptic circuit emulating an optic nerve. As a case study, the entire neural processing approach presented in this paper is applied to optical flow detection considering a four-PIR array as input. The results validate both the spiking approach for an analog sensor presented and the ability to retrieve the analog information sent as spike trains in a simulated optic nerve.

Funder

Spanish grant MINDROB

CHIST-ERA H2020 grant SMALL

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3