Orientation-Independent Human Activity Recognition Using Complementary Radio Frequency Sensing

Author:

Muaaz Muhammad1ORCID,Waqar Sahil1ORCID,Pätzold Matthias1ORCID

Affiliation:

1. Faculty of Engineering and Science, University of Agder, 4898 Grimstad, Norway

Abstract

RF sensing offers an unobtrusive, user-friendly, and privacy-preserving method for detecting accidental falls and recognizing human activities. Contemporary RF-based HAR systems generally employ a single monostatic radar to recognize human activities. However, a single monostatic radar cannot detect the motion of a target, e.g., a moving person, orthogonal to the boresight axis of the radar. Owing to this inherent physical limitation, a single monostatic radar fails to efficiently recognize orientation-independent human activities. In this work, we present a complementary RF sensing approach that overcomes the limitation of existing single monostatic radar-based HAR systems to robustly recognize orientation-independent human activities and falls. Our approach used a distributed mmWave MIMO radar system that was set up as two separate monostatic radars placed orthogonal to each other in an indoor environment. These two radars illuminated the moving person from two different aspect angles and consequently produced two time-variant micro-Doppler signatures. We first computed the mean Doppler shifts (MDSs) from the micro-Doppler signatures and then extracted statistical and time- and frequency-domain features. We adopted feature-level fusion techniques to fuse the extracted features and a support vector machine to classify orientation-independent human activities. To evaluate our approach, we used an orientation-independent human activity dataset, which was collected from six volunteers. The dataset consisted of more than 1350 activity trials of five different activities that were performed in different orientations. The proposed complementary RF sensing approach achieved an overall classification accuracy ranging from 98.31 to 98.54%. It overcame the inherent limitations of a conventional single monostatic radar-based HAR and outperformed it by 6%.

Funder

Research Council of Norway

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3