A Deep Learning Model with Signal Decomposition and Informer Network for Equipment Vibration Trend Prediction

Author:

Wang Huiyun1,Guo Maozu1,Tian Le1

Affiliation:

1. School of Electrical and Information Engineering, Beijing University of Civil Engineering and Architecture, Beijing 102616, China

Abstract

Accurate equipment operation trend prediction plays an important role in ensuring the safe operation of equipment and reducing maintenance costs. Therefore, monitoring the equipment vibration and predicting the time series of the vibration trend is one of the effective means to prevent equipment failures. In order to reduce the error of equipment operation trend prediction, this paper proposes a method for equipment operation trend prediction based on a combination of signal decomposition and an Informer prediction model. Aiming at the problem of high noise in vibration signals, which makes it difficult to obtain intrinsic characteristics when directly using raw data for prediction, the original signal is decomposed once using the variational mode decomposition (VMD) algorithm optimized by the improved sparrow search algorithm (ISSA) to obtain the intrinsic mode function (IMF) for different frequencies and calculate the fuzzy entropy. The improved adaptive white noise complete set empirical mode decomposition (ICEEMDAN) is used to decompose the components with the largest fuzzy entropy to obtain a series of intrinsic mode components, fully combining the advantages of the Informer model in processing long time series, and predict equipment operation trend data. Input all subsequences into the Informer model and reconstruct the results to obtain the predicted results. The experimental results indicate that the proposed method can effectively improve the accuracy of equipment operation trend prediction compared to other models.

Funder

Ministry of Science and Technology

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3