Prediction of Short Fiber Composite Properties by an Artificial Neural Network Trained on an RVE Database

Author:

Breuer KevinORCID,Stommel Markus

Abstract

In this study, an artificial neural network is designed and trained to predict the elastic properties of short fiber reinforced plastics. The results of finite element simulations of three-dimensional representative volume elements are used as a data basis for the neural network. The fiber volume fraction, fiber length, matrix-phase properties, and fiber orientation are varied so that the neural network can be used within a very wide range of parameters. A comparison of the predictions of the neural network with additional finite element simulations shows that the stiffnesses of short fiber reinforced plastics can be predicted very well by the neural network. The average prediction accuracy is equal or better than by a two-step homogenization using the classical method of Mori and Tanaka. Moreover, it is shown that the training of the neural network on an extended data set works well and that particularly calculation-intensive data points can be avoided without loss of prediction quality.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

Mechanics of Materials,Biomaterials,Civil and Structural Engineering,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3