Generating a Cylindrical Panorama from a Forward-Looking Borehole Video for Borehole Condition Analysis

Author:

Deng ZhaopengORCID,Cao MaoyongORCID,Geng Yushui,Rai LaxmishaORCID

Abstract

Geological exploration plays a fundamental and crucial role in geological engineering. The most frequently used method is to obtain borehole videos using an axial view borehole camera system (AVBCS) in a pre-drilled borehole. This approach to surveying the internal structure of a borehole is based on the video playback and video screenshot analysis. One of the drawbacks of AVBCS is that it provides only a qualitative description of borehole information with a forward-looking borehole video, but quantitative analysis of the borehole data, such as the width and dip angle of fracture, are unavailable. In this paper, we proposed a new approach to create a whole borehole-wall cylindrical panorama from the borehole video acquired by AVBCS, which provides a possibility for further analysis of borehole information. Firstly, based on the Otsu and region labeling algorithms, a borehole center location algorithm is proposed to extract the borehole center of each video image automatically. Afterwards, based on coordinate mapping (CM), a virtual coordinate graph (VCG) is designed in the unwrapping process of the front view borehole-wall image sequence, generating the corresponding unfolded image sequence and reducing the computational cost. Subsequently, based on the sum of absolute difference (SAD), a projection transformation SAD (PTSAD), which considers the gray level similarity of candidate images, is proposed to achieve the matching of the unfolded image sequence. Finally, an image filtering module is introduced to filter the invalid frames and the remaining frames are stitched into a complete cylindrical panorama. Experiments on two real-world borehole videos demonstrate that the proposed method can generate panoramic borehole-wall unfolded images from videos with satisfying visual effect for follow up geological condition analysis. From the resulting image, borehole information, including the rock mechanical properties, distribution and width of fracture, fault distribution and seam thickness, can be further obtained and analyzed.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research on the processing algorithm of drilling image;Eighth International Conference on Electronic Technology and Information Science (ICETIS 2023);2023-06-20

2. An image-capturing system to generate 3D borehole models using multiple fiberscope cameras;International Workshop on Advanced Imaging Technology (IWAIT) 2023;2023-03-26

3. Geological Borehole Video Image Stitching Method Based on Local Homography Matrix Offset Optimization;Sensors;2023-01-05

4. Research on the method of locating and unwrapping the Center Point of Pipeline Inner Wall Image based on Linear projection;2022 4th International Conference on Intelligent Control, Measurement and Signal Processing (ICMSP);2022-07-08

5. Fan-ring interpolation method applied to the panorama unwrapping of the deep-hole parts;Journal of the Optical Society of America A;2022-01-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3