Around View Monitoring-Based Vacant Parking Space Detection and Analysis

Author:

Hsu Chih-MingORCID,Chen Jian-Yu

Abstract

Accelerated urbanization and the ensuing rapid increase in urban populations led to the need for a tremendous number of parking spaces. Automated parking systems coupled with new parking lot layouts can effectively address the need. However, most automated parking systems available on the market today use ultrasonic sensors to detect vacant parking spaces. One limitation of this method is that a reference vehicle must be parked in an adjacent space, and the accuracy of distance information is highly dependent on the positioning of the reference vehicle. To overcome this limitation, an around view monitoring-based method for detecting parking spaces and algorithms analyzing the vacancy of the space are proposed in this study. The framework of the algorithm comprises two main stages: parking space detection and space occupancy classification. In addition, a highly robust analysis method is proposed to classify parking space occupancy. Two angles of view were used to detect features, classified as road or obstacle features, within the parking space. Road features were used to provide information regarding the possible vacancy of a parking space, and obstacle features were used to provide information regarding the possible occupancy of a parking space. Finally, these two types of information were integrated to determine whether a specific parking space is occupied. The experimental settings in this study consisted of three common settings: an indoor parking lot, an outdoor parking lot, and roadside parking spaces. The final tests showed that the method’s detection rate was lower in indoor settings than outdoor settings because lighting problems are severer in indoor settings than outdoor settings in around view monitoring (AVM) systems. However, the method achieved favorable detection performance overall. Furthermore, we tested and compared performance based on road features, obstacle features, and a combination of both. The results showed that integrating both types of features produced the lowest rate of classification error.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3