Upcycling of FGD Gypsum into a Product to Reduce Interrill Erosion: A Study Assessing Methods of Soil Surface Application

Author:

Acuña-Guzman Salvador F.ORCID,Norton L. Darrell

Abstract

Soil conditioners have shown benefits in the reduction of soil erosion. A concomitant application of gypsum and polyacrylamide promotes aggregate stability and reduces the amount of runoff discharge and soil losses. Synthetic gypsum produced from flue gas desulfurization (FGD) at coalfired power plants has the potential to serve as a more sustainable source for the agricultural application of this soil conditioner. Upcycling of FGD gypsum into a pellet of a mixture of ground FGD gypsum and polyacrylamide (PAM) was compared to other types of soil surface application methods. Results confirm that surface application of PAM and FGD gypsum reduced soil erosion. Depending on the type of application method, addition of PAM and FGD gypsum presented different effects on the local hydrological processes and microtopography. Though PAM in solution acts as a physical net on the soil surface, the amount of water needed for its application makes it impractical for agricultural fields. Granular application of PAM and FGD gypsum, as well as pellets (upcycled product) has been shown to have a delayed effect in reducing soil erosion, as these methods required PAM particles to be activated. The upcycled product of FGD gypsum and PAM in the form of pellets demonstrates that the sudden expansion of the pellets due to PAM hydration results in the rapid release of the gypsum grains, providing a better treatment on the soil surface. Moreover, the increased surface area of PAM and gypsum due to the grinding is advantageous for a more rapid activation of the soil conditioners. The upcycled product of FGD gypsum and PAM is a practical application method that could be adapted by farmers to be used at field scale.

Funder

USDA Agricultural Research Service

Purdue University

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3