The Role of Selenium on the Formation of Spheroidal Graphite in Cast Iron

Author:

Alonso Gorka,Stefanescu Doru MichaelORCID,Aguado Edurne,Suarez Ramon

Abstract

Sulfur, an element that belongs to group 16 (chalcogens) of the periodic table, is an excellent promoter of nucleation substrates for graphite in cast iron. In ductile iron, sulfur favors a higher nodule count, which inhibits the risk of carbides and of microporosity. It is reasonable to expect that other elements from group 16, such as selenium or tellurium, play similar roles in the nucleation of graphite. The objective of this paper was to investigate the effect of selenium on the process of graphite formation. Thermal analysis cups were poured to evaluate the nodule count and size distribution. Some of the cups were not inoculated, while others were inoculated with a Ce-bearing inoculant, or with the Ce inoculant and additions of Se. Cross-shaped castings were also poured to quantify the microporosity regions by tomography. It appears that selenium additions modify the number and size of graphite particles, as well as the volume of microshrinkage. Direct correlations between these three parameters were found. Advanced Extensive Field Emission Gun Scanning Electron Microscope (FEG-SEM) techniques were used to identify the nature of the main nucleation compounds. Selenides, combined with Mg and rare earths, were observed to serve as nuclei for graphite. Their presence was justified by thermodynamics calculations.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Reference28 articles.

1. Spheroidal Graphite Nuclei in Rare Earth and Magnesium Inoculated Irons;Warrick;AFS Cast Met. Res. J.,1966

2. Characterization of inclusions as nuclei for spheroidal graphite in ductile cast iron;Lalich;AFS Trans.,1976

3. Identification of heterogeneous nuclei for graphite spheroids in chill-cast iron;Jacobs;Met. Technol.,1976

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3