Closure Behavior of the Artificial Gas Pore inside the As-Cast Ti6Al4V Alloy during HIP: Constitutive Modeling and Numerical Simulation

Author:

Xu Qian,Li Wen,Yin Yajun,Zhou Jianxin

Abstract

The isothermal compression tests of as-cast Ti6Al4V alloy specimens, with coarse grains obtained from the runner, were conducted at a strain rate range of 0.001–0.1 s−1 and a temperature range of 710–920 °C. The experimental results were used for constitutive modeling. A hyperbolic sine constitutive model was developed to predict the flow behaviors of the as-cast Ti6Al4V alloy. The experimental results agreed well with the predicted results by the above constitutive model. After the establishment of the constitutive model, the closure behavior of the gas pore inside the as-cast Ti6Al4V alloy during hot isostatic pressing (HIP) was studied by experiment and simulation. Through wire cutting, turning, drilling, and argon arc welding of the raw material, the HIP samples were obtained, with these being a cylindrical specimen (Φ15 mm × 13 mm) with a sealed pore (Φ2.5 mm × 4 mm) inside. Interrupted HIP experiments at 780 °C/102 MPa/0 min and 920 °C/120 MPa/20 min were designed, and a full-standard HIP experiment (920 °C/120 MPa/150 min) was also carried out. The HIP sample was simultaneously numerically simulated using the above constitutive model under the same conditions as the experiment. The simulation and the experimental results revealed that the pore begins to close in the first stage of HIP, and the closing rate is faster than in the second stage of HIP. The gas pore cannot be completely annihilated in a standard HIP cycle. Plastic deformation is the main mechanism for pore closure during HIP.

Funder

The National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3