Fail-Safe Joints between Copper Alloy (C18150) and Nickel-Based Superalloy (GH4169) Made by Transient Liquid Phase (TLP) Bonding and Using Boron-Nickel (BNi-2) Interlayer

Author:

Zhang Chengcong,Shirzadi Amir

Abstract

Joining heat conducting alloys, such as copper and its alloys, to heat resistant nickel-based superalloys has vast applications in nuclear power plants (including future fusion reactors) and liquid propellant launch vehicles. On the other hand, fusion welding of most dissimilar alloys tends to be unsuccessful due to incompatibilities in their physical properties and melting points. Therefore, solid-state processes, such as diffusion bonding, explosive welding, and friction welding, are considered and commercially used to join various families of dissimilar materials. However, the solid-state diffusion bonding of copper alloys normally results in a substantial deformation of the alloy under the applied bonding load. Therefore, transient liquid phase (TLP) bonding, which requires minimal bonding pressure, was considered to join copper alloy (C18150) to a nickel-based superalloy (GH4169) in this work. BNi-2 foil was used as an interlayer, and the optimum bonding time (keeping the bonding temperature constant as 1030 °C) was determined based on microstructural examinations by optical microscopy (OM), scanning electron microscopy (SEM), energy dispersive spectrometry (EDS), tensile testing, and nano-hardness measurements. TLP bonding at 1030 °C for 90 min resulted in isothermal solidification, hence obtained joints free from eutectic phases. All of the tensile-tested samples failed within the copper alloy and away from their joints. The hardness distribution across the bond zone was also studied.

Funder

National Natural Science Foundation of China

Shanghai Rising-Star Program

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3