Comparison of Properties and Bead Geometry in MIG and CMT Single Layer Samples for WAAM Applications

Author:

Stinson Harley,Ward Richard,Quinn Justin,McGarrigle Cormac

Abstract

The process of Wire Arc Additive Manufacturing (WAAM) utilizes arc welding technology to fabricate metallic components by depositing material in a selective layered fashion. Several welding processes exist that can achieve this layered deposition strategy. Gas Metal Arc Welding (GMAW) derived processes are commonly favored for their high deposition rates (1–4 kg/h) and minimal torch reorientation required during deposition. A range of GMAW processes are available; all of which have different material transfer modes and thermal energy input ranges and the resultant metallic structures formed from these processes can vary in their mechanical properties and morphology. This work will investigate single-layer deposition and vary the process parameters and process mode to observe responses in mechanical properties, bead geometry and deposition rate. The process modes selected for this study were GMAW derived process of Metal Inert Gas (MIG) and Cold Metal Transfer (CMT). Characterization of parameter sets revealed relationships between torch travel speeds, wire feed speeds and the specimen properties and proportions. Differences were observed in the cross-sectional bead geometry and deposition rates when comparing MIG and CMT samples though the influence of process mode on mechanical properties was less significant compared to process parameter selection.

Funder

Department for economy

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3