Strain Amplitude Dependence of High Damping Grp/Mg97Zn1Y2 Composites Ranging from Anelastic to Microplastic

Author:

Wan Diqing,Dong Shaoyun,Hu Yinglin,Hu Jiajun,Xue Yandan,Han Guoliang

Abstract

In this paper, the damping capacities and damping mechanisms of high damping, graphite-reinforced Mg97Zn1Y2 composites were investigated. Composites consisting of different graphite particle sizes (24, 11, and 3 μm) were designed and prepared using the casting method. The microstructure of the composites was examined using optical microscopy (OM) and transmission electron microscopy (TEM), which confirmed that the graphite particles were successfully planted into the Mg97Zn1Y2 matrix. Measurements made with a dynamic mechanical analyzer (DMA) showed that the Grp/Mg97Zn1Y2 composite has a high damping capacity. At the anelastic strain amplitude stage, the damping properties of the Grp/Mg97Zn1Y2 composites were found to be higher than those of the Mg97Zn1Y2 alloy. Furthermore, decreasing the graphite particle size was found to improve the damping properties of the Grp/Mg97Zn1Y2 composites. At the microplastic strain amplitude stage, the damping properties of the Mg97Zn1Y2 alloy were found to be higher than those of the Grp/Mg97Zn1Y2 composites. Moreover, the damping properties of the Grp/Mg97Zn1Y2 composites were found to decrease with increasing graphite particle size. The reason for the increased damping of the Grp/Mg97Zn1Y2 composites during the anelastic strain amplitude stage can be attributed to the increase in the number of damping sources and weak interactions among the dislocation damping mechanisms. At the microplastic strain amplitude stage, the damping properties of the composite are mainly affected by the activation volume of the slipped dislocation.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3