Influence of Anodization on the Fatigue and Corrosion-Fatigue Behaviors of the AZ31B Magnesium Alloy

Author:

de Oliveira Leandro AntonioORCID,dos Santos Silvano Leal,de Oliveira Vinicius Antonio,Antunes Renato AltobelliORCID

Abstract

The aim of the present work was to investigate the effect of anodization on the fatigue and corrosion-fatigue behavior of the AZ31B magnesium alloy. Samples were anodized in constant current density mode at 20 mA cm−2 for 5 min at room temperature, in an environmentally friendly electrolyte consisting of a mixture of sodium hydroxide and sodium silicate. Fatigue tests were conducted in air and in phosphate buffer solution (PBS) at room temperature in the tension-tension mode, at a frequency of 5 Hz and stress ratio of 0.1. S-N curves were obtained for polished and anodized samples. Fracture surface morphology was examined by optical stereo-microscopy and scanning electron microscopy. Results indicated that the fatigue limit was reduced approximately 60% at 106 cycles for the anodized specimens, either for the fatigue tests conducted in air or PBS solution. Anodization had a remarkable effect on the fatigue behavior of the AZ31B alloy. The effect of the corrosive environment, in turn, was not significant.

Funder

São Paulo Research Foundation

Coordenação de Aperfeicoamento de Pessoal de Nível Superior

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3