Molten Steel Flow, Heat Transfer and Inclusion Distribution in a Single-Strand Continuous Casting Tundish with Induction Heating

Author:

Dou Weixue,Yang Zexi,Wang Ziming,Yue Qiang

Abstract

The electrical magnetic field plays an important role in controlling the molten steel flow, heat transfer and migration of inclusions. However, industrial tests for inclusion distribution in a single-strand tundish under the electromagnetic field have never been reported before. The distribution of non-metallic inclusions in steel is still uncertain in an induction-heating (IH) tundish. In the present study, therefore, using numerical simulation methods, we simulate the flow and heat transfer characteristics of molten steel in the channel-type IH tundish, especially in the channel. At the same time, industrial trials were carried out on the channel-type IH tundish, and the temperature distribution of the tundish with or without IH under different pouring ladle furnace was analyzed. The method of scanning electron microscopy was employed to obtain the distribution of inclusions on different channel sections. The flow characteristics of molten steel in the channel change with flow time, and the single vortex and double vortex alternately occur under the electromagnetic field. The heat loss of molten steel can be compensated in a tundish with IH. As heating for 145 s, the temperature of the molten steel in the channel increases by 31.8 K. It demonstrates that the temperature of the molten steel in the tundish can be kept at the target value of around 1813 K, fluctuating up and down 3 K after using electromagnetic IH. In the IH channel, the large inclusions with diameters greater than 9 μm are more concentrated at the edge of the channel, and the effect of IH on the inclusion with diameters less than 9 μm has little effect.

Funder

National Natural Science Foundation of China

Excellent top talent cultivation project of colleges and universities in Anhui Province

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3