Abstract
Iron–silicon alloys with up to 6.5 wt.% Si offer an improvement of soft magnetic properties in electrical steels compared to conventional electrical steel grades. However, steels with high Si contents are very brittle and cannot be produced by cold rolling. In addition to solid solution hardening, it is assumed that the B2- and DO3-superlattice structures are responsible for the poor cold workability. In this work, two cast strips with 6.0 wt.% Si were successfully produced by the twin roll strip casting process and cooled differently by secondary cooling. The aim of the different cooling strategies was to suppress the formation of the embrittling superlattice structures and thus enable further processing by cold rolling. A comprehensive material characterization allows for the understanding of the influence of casting parameters and cooling strategies on segregation, microstructure and superlattice structure. The results show that both cooling strategies are not sufficient to prevent the formation of B2- and DO3-structures. Although the dark field images show a condition which is far from equilibrium, the achieved condition is not sufficient to ensure cold processing of the material.
Funder
Deutsche Forschungsgemeinschaft
Subject
General Materials Science,Metals and Alloys
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献