Urban Architectural Style Recognition and Dataset Construction Method under Deep Learning of Street View Images: A Case Study of Wuhan

Author:

Xu Hong12,Sun Haozun1,Wang Lubin3ORCID,Yu Xincan1,Li Tianyue1

Affiliation:

1. School of Urban Construction, Wuhan University of Science and Technology, Wuhan 430065, China

2. Hubei Provincial Engineering Research Center of Urban Regeneration, Wuhan University of Science and Technology, Wuhan 430065, China

3. State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China

Abstract

The visual quality and spatial distribution of architectural styles represent a city’s image, influence inhabitants’ living conditions, and may have positive or negative social consequences which are critical to urban sensing and designing. Conventional methods of identifying architectural styles rely on human labor and are frequently time-consuming, inefficient, and subjective in judgment. These issues significantly affect the large-scale management of urban architectural styles. Fortunately, deep learning models have robust feature expression abilities for images and have achieved highly competitive results in object detection in recent years. They provide a new approach to supporting traditional architectural style recognition. Therefore, this paper summarizes 22 architectural styles in a study area which could be used to define and describe urban architectural styles in most Chinese urban areas. Then, this paper introduced a Faster-RCNN general framework of architectural style classification with a VGG-16 backbone network, which is the first machine learning approach to identifying architectural styles in Chinese cities. Finally, this paper introduces an approach to constructing an urban architectural style dataset by mapping the identified architectural style through continuous street view imagery and vector map data from a top-down building contour map. The experimental results show that the architectural style dataset created had a precision of 57.8%, a recall rate of 80.91%, and an F1 score of 0.634. This dataset can, to a certain extent, reflect the geographical distribution characteristics of a wide variety of urban architectural styles. The proposed approach could support urban design to improve a city’s image.

Funder

National Natural Science Foundation of China

the Hubei Changjiang National Cultural Park Construction Research Project

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3