Place-Centered Bus Accessibility Time Series Classification with Floating Car Data: An Actual Isochrone and Dynamic Time Warping Distance-Based k-Medoids Method

Author:

Wang Chen1234ORCID,Zhao Si-jia1234,Ren Zong-qiang3,Long Qi5

Affiliation:

1. School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China; +86-551-6386-1441

2. Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, Anhui University, Hefei 230601, China

3. Anhui Geographic Information Intelligence Technology and Engineering Center, Hefei 230001, China

4. Engineering Center for Geographic Information of Anhui Province, Hefei 230001, China

5. Anhui Mobile Communication Co., Ltd., Hefei 230001, China

Abstract

Classifying a time series is a fundamental task in temporal analysis. This provides valuable insights into the temporal characteristics of data. Although it has been applied to traffic flow and individual-centered accessibility analysis, it has yet to be applied to place-centered accessibility research. In this study, we have proposed an actual isochrone and dynamic time-wrapping distance-based k-medoids method and tested its applicability to a bus accessibility analysis. Using bus floating car data, our method calculated the actual isochrone area as an accessibility measurement and constructs an accessibility time series for each hexagonal geographical unit within the area of interest. We then calculated the dynamic time warp distance between the accessibility time series of pairwise geographical units and used these distances for k-medoid clustering. The optimized class number k was selected by considering the elbow method, silhouette score, and human examination. Our case study in Hefei, China demonstrates the feasibility of our method for accessibility time series classification. We also discovered that the resulting classes follow clear spatial patterns, indicating that different time series classes may be correlated with their spatial location. To our knowledge, this is the first time that such a classification method has been applied to place-centered accessibility time series analysis. Our data-driven method can inform place-centered accessibility in an era in which large quantities of spatiotemporal data like floating car data are available.

Funder

National Natural Science Foundation of China

Open Research Fund Program of the Key Laboratory of Digital Mapping and Land Information Application Engineering, NASG, China

Natural Science Foundation of Anhui Province

Hefei Municipal Natural Science Foundation

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Exploring Dynamic Time Warping for Network Traffic Analysis;2024 International Conference on Optimization Computing and Wireless Communication (ICOCWC);2024-01-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3