Rapid Fog-Removal Strategies for Traffic Environments

Author:

Liu Xinchao1,Hong Liang1,Lin Yier1

Affiliation:

1. College of Mechanical Engineering, Tianjin University of Science and Technology, Tianjin 300222, China

Abstract

In a foggy traffic environment, the vision sensor signal of intelligent vehicles will be distorted, the outline of obstacles will become blurred, and the color information in the traffic road will be missing. To solve this problem, four ultra-fast defogging strategies in a traffic environment are proposed for the first time. Through experiments, it is found that the performance of Fast Defogging Strategy 3 is more suitable for fast defogging in a traffic environment. This strategy reduces the original foggy picture by 256 times via bilinear interpolation, and the defogging is processed via the dark channel prior algorithm. Then, the image after fog removal is processed via 4-time upsampling and Gaussian transform. Compared with the original dark channel prior algorithm, the image edge is clearer, and the color information is enhanced. The fast defogging strategy and the original dark channel prior algorithm can reduce the defogging time by 83.93–84.92%. Then, the image after fog removal is inputted into the YOLOv4, YOLOv5, YOLOv6, and YOLOv7 target detection algorithms for detection and verification. It is proven that the image after fog removal can effectively detect vehicles and pedestrians in a complex traffic environment. The experimental results show that the fast defogging strategy is suitable for fast defogging in a traffic environment.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference47 articles.

1. Contrast restoration of weather degraded images;Narasimhan;IEEE Trans. Pattern Anal. Mach. Learn.,2003

2. Single Image Dehazing by Multi-Scale Fusion;Ancuti;IEEE Trans. Image Process.,2013

3. Single Image Haze Removal Using Dark Channel Prior;He;IEEE Trans. Pattern Anal. Mach. Intell.,2010

4. Multispectral Transmission Map Fusion Method and Architecture for Image Dehazing;Kumar;IEEE Trans. Very Large Scale Integr. (VLSI) Syst.,2019

5. Hybrid Patching for a Sequence of Differently Exposed Images with Moving Objects;Zheng;IEEE Trans. Image Process.,2013

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3