Automated Bowel Sound and Motility Analysis with CNN Using a Smartphone

Author:

Kutsumi Yuka,Kanegawa Norimasa,Zeida Mitsuhiro,Matsubara Hitoshi,Murayama Norihito

Abstract

Bowel sound (BS) is receiving more attention as an indicator of gut health since it can be acquired non-invasively. Current gut health diagnostic tests require special devices that are limited to hospital settings. This study aimed to develop a prototype smartphone application that can record BS using built-in microphones and automatically analyze the sounds. Using smartphones, we collected BSs from 100 participants (age 37.6 ± 9.7). During screening and annotation, we obtained 5929 BS segments. Based on the annotated recordings, we developed and compared two BS recognition models: CNN and LSTM. Our CNN model could detect BSs with an accuracy of 88.9% andan F measure of 72.3% using cross evaluation, thus displaying better performance than the LSTM model (82.4% accuracy and 65.8% F measure using cross validation). Furthermore, the BS to sound interval, which indicates a bowel motility, predicted by the CNN model correlated to over 98% with manual labels. Using built-in smartphone microphones, we constructed a CNN model that can recognize BSs with moderate accuracy, thus providing a putative non-invasive tool for conveniently determining gut health and demonstrating the potential of automated BS research.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3